Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет


Проблема такого подхода в том, что очень непросто разработать анализаторы признаков для сотен тысяч объектов, и даже с большим набором признаков программе будет трудно различить объекты на изображении, если те частично закрыты, и понять, где заканчивается один объект и начинается другой.

Едва ли в 1960-х кто-то мог предположить, что потребуется 50 лет и в миллион раз бо́льшая мощность компьютера, прежде чем компьютерное зрение достигнет уровня человеческого. Предположение, что создать машинное зрение будет просто, основывается на том, что мы сами без труда видим, слышим и передвигаемся. Мы профессионалы во всем вышеперечисленном, потому что указанные навыки помогают нам выжить, а эволюции понадобились миллионы лет, чтобы усовершенствовать их. Это и сбило с толку первых исследователей в области ИИ. Обратная ситуация с доказательством теорем: человеку нужно обладать высоким интеллектом, чтобы сделать это, в то время как для компьютера приведение доказательства не составит никакого труда, потому что логика у него развита гораздо лучше, чем у нас. Способность мыслить логически – результат поздней эволюции, и даже людям нужна тренировка, чтобы выстроить длинную логическую цепочку и по ней прийти к однозначному выводу. Для большинства проблем, которые нужно решить, чтобы выжить, необходимы выводы из предыдущего опыта и их обобщение.