Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет
Беспилотные автомобили – лишь самая заметная часть сдвига в экономике, вызванного информационными технологиями. Данные текут в Интернете, как вода по городскому трубопроводу. Они собираются в огромных информационных центрах, управляемых такими компаниями, как Google, Amazon, Microsoft и др. Для их работы требуется огромное количество электроэнергии, поэтому центры располагаются рядом с гидроэлектростанциями – при передаче потока информации вырабатывается столько тепла, что только реки могут его охладить. В 2013 году информационные центры в США потребили 10 миллионов мегаватт, что сравнимо с энергией, которую вырабатывают 34 большие электростанции[10]. Но гораздо большее значение для экономики имеет то, как используются эти данные. Необработанная информация превращается в знание о людях: что вы делаете, чего хотите и что вообще из себя представляете. Более того, эта информация передается от вас через устную речь.
Учим переводить
В настоящее время глубокое обучение применяется в компании Google для сотни приложений, от Street View и до Inbox Smart Reply, а также для голосового поиска. Несколько лет назад инженеры Google поняли, что необходимо доработать эти приложения до очень высокого уровня, и приступили к созданию специального чипа, предназначенного для глубокого обучения. Для удобства плата спроектирована так, что входит в стандартный слот для жесткого диска в стойке центра обработки данных. Тензорный процессор Google (Google Tensor Processing Unit; Google TPU) сегодня внедрен на множестве серверов по всему миру, значительно повышая производительность приложений с глубоким обучением.