Искусство мыслить рационально. Шорткаты в математике и в жизни
Роль шортката очень часто состоит в понимании основополагающего принципа, объединяющего кажущиеся несвязанными друг с другом задачи. Прелесть шортката Гаусса в том, что даже если учитель решит усложнить задание и предложит сложить числа до тысячи или до миллиона, шорткат по-прежнему будет работать. Последовательное сложение чисел будет занимать все больше времени, но на прием Гаусса это никак не повлияет: чтобы сложить числа от единицы до миллиона, нужно просто по-прежнему разбить их на пары и получить 500 000 пар, сумма членов каждой из которых равна 1 000 001. Перемножим эти два числа, и – бинго! – ответ готов. Представьте себе туннель, образующий короткий путь сквозь гору: если даже гора каким-то образом станет выше, на дороге это никак не отразится.
Способность создавать и изменять язык тоже оказывается очень эффективным шорткатом. Алгебра помогает нам распознавать фундаментальные принципы, лежащие в основе широкого спектра совершенно не похожих друг на друга задач. Язык координат позволяет выразить геометрию в числах и часто выявляет шорткаты, которых не видно на геометрических чертежах. Создание языка может быть поразительным средством понимания. Я помню, как боролся с необычайно сложной системой, описание которой требовало огромного множества условий. Откровением стал для меня совет научного руководителя: «Дайте ей название». Это позволило мне создать шорткат для размышлений.