Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей

*****

Уравнения движения. Закон природы «сила – это темп изменения количества движения» традиционно называется вторым законом Ньютона. Его еще часто называют уравнением движения или уравнениями движения. Вот как получается уравнение, например, для Марса. Солнце притягивает Марс с силой, которая зависит от расстояния между Марсом и Солнцем. Но оно-то и неизвестно, ведь задача как раз и состоит в том, чтобы узнать, как положение планеты зависит от времени. А как мы вообще применяем уравнения для решения задач? Мы делаем вид, что неизвестное нам известно, обозначаем его какой-нибудь буквой (например, но совершенно не обязательно, x) и стараемся переписать условие задачи, используя эту букву. В случае с Марсом мы поступаем точно так же, только буква кодирует не неизвестное нам число, а неизвестное нам поведение, т. е. функцию времени. (И таких букв/функций вообще-то три, когда движение происходит в трехмерном пространстве.) Условие задачи, которое надо использовать, чтобы составить уравнение, – это и есть второй закон Ньютона: мы совершаем с неизвестной функцией два разных действия, что дает две разные вещи, но их нужно приравнять. Во-первых, мы записываем выражение для силы; она зависит от расстояния, а потому и от искомого положения планеты по отношению к Солнцу. Во-вторых, мы берем темп изменения количества движения, в данном случае – темп изменения скорости планеты (умноженной на массу). Но сама скорость планеты – это темп изменения ее положения. Итак, мы выразили две разные величины через (пока неизвестное) положение планеты, изменяющееся со временем. Ньютон же говорит нам, что эти две разные величины равны друг другу. Все, что происходит в мире, происходит так, что они совпадают. Поэтому мы принимаемся за выяснение, как должно себя вести положение планеты в зависимости от времени, чтобы записанное равенство действительно было равенством. Это и выражают словами «решить уравнения движения».