Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей

*****

2


Рис. 2.5.2


1232

12


Рис. 2.6.2


22222

2221

*****

Греки и троянцы. Лагранж умер за 144 года до запуска первого искусственного спутника Земли, и не исключено, что он рассматривал пять специальных точек в системе двух тел как (всего лишь) математическое упражнение. Но нам, забравшимся на плечи гигантов, теперь видно, что интересная математика, возникающая при описании какой-либо реальной физической системы, – это почти гарантия обнаружения физического эффекта, в котором математическая достопримечательность тем или иным способом себя проявляет. И действительно, спустя более столетия после рассуждений Лагранжа астрономы начали открывать троянцев!

454444545


Рис. 2.7.


4545


4


5


Рис. 2.8.


Гектор и Патрокл.


45

*****

Полет из пращи. Путешествия к астероидам и планетам – это относительно далекие путешествия, оказывающиеся долгими при доступных нам скоростях. Разогнаться быстрее нелегко: топлива хватает только на что-то вроде TLI – единовременный разгон при старте с околоземной орбиты; хорошо, если потом остается еще немного на маневры. Дефицит топлива определяется трудностью его доставки к месту использования. Реактивная тяга основана на том, что, выбрасывая что-то «назад», реактивный аппарат движется «вперед»; здесь важна скорость, с которой некоторый «агент» выбрасывается назад (в подавляющем большинстве реально существующих реактивных двигателей это горячий газ). Реактивный аппарат несет с собой источник энергии для этого «выбрасывания» – в современных ракетах это горючее (например, керосин или метан) и окислитель. Их соединение обеспечивает горение, при котором и выделяется энергия. И вот здесь скрыт ключевой момент: необходимость с самого старта нести с собой все топливо (горючее и окислитель), в том числе и тот запас, который понадобится на более поздних этапах полета. Не только «полезную нагрузку», но и это топливо необходимо разогнать на более ранних этапах движения, а для этого разгона требуется дополнительное топливо, которое, в свою очередь, необходимо разогнать, для чего нужно еще сколько-то топлива, и так далее. Это удручающее положение дел математически выражается формулой Циолковского – соотношением, которое на основе законов движения Ньютона говорит, какой должна быть стартовая масса ракеты, чтобы разогнать желаемую «полезную» массу до заданной скорости, выбрасывая продукты горения с заданной скоростью относительно ракеты. Удручающим здесь является характер этой зависимости: увеличение конечной скорости достигается колоссальным увеличением массы ракеты – т. е. количества топлива – при старте.