От микроорганизмов до мегаполисов. Поиск компромисса между прогрессом и будущим планеты

Существует еще одна довольно распространенная модель роста – кривая Гомпертца, выведенная еще раньше функции Ферхюльста. Изначально модель была предложена в 1825 году Бенджамином Гомпертцем (1779–1865), британским математиком, для оценки смертности людей (Gompertz, 1825). В ней, как и в логистической функции, имеются три константы, асимптота и фиксированная степень асимметрии, но, как уже отмечалось, логистическая функция имеет точку перегиба точно посередине между двумя асимптотами, и ее кривая радиально симметрична по отношению к этой точке перегиба. В отличие от нее функция Гомпертца дает асимметричную кривую с точкой перегиба на уровне 36,78 (е–1) асимптотического максимума и, следовательно, асимметрична (Tjørve and Tjørve, 2017). Эта кривая подходит лучше, чем логистическая, для моделирования процессов сигмоидального роста, которые замедляются после достижения приблизительно трети от своего максимального значения (Vieira and Hoffmann, 1977).

Более века спустя Винзор (Winsor, 1932, 1) отмечал, что «кривая Гомпертца долго интересовала только статистиков страховых учреждений. Однако в последнее время она используется различными авторами как кривая роста для оценки как биологических, так и экономических феноменов». Но он называл только три области применения: рост веса скота (но только после того как животные достигли около 70 % своей зрелой массы), рост размера раковины двустворчатого моллюска и рост гигантского Тихоокеанского моллюска, – делая вывод, что в силу практически аналогичных свойств ни логистическая кривая, ни кривая Гомпертца не имеют «значительного преимущества друг перед другом в отношении количества явлений, рост которых можно было бы описать с их помощью» (Winsor, 1932, 7).