Новые миры образования: Трансформация обучения в эпоху искусственного интеллекта



Для генерации учебных текстов мы использовали два подхода: написание развернутого промта с четкой структурой текста и ключевыми тезисами, а также итеративное генерирование текста с дополнительными инструкциями. Промт-инженерия также открывает новые возможности для создания материалов сопровождения обучения, таких как карты пути обучения, планы сопровождения и учебные инструкции.

В задачах оценивания и обратной связи промт-инженерия позволяет системно подходить к разработке оценочных средств и стратегий формирования обратной связи. Один из успешных подходов – создание промтов, имитирующих негативные отзывы от гипотетических студентов, что помогает выявить узкие места в обучении.

Эксперименты с хорошо структурированными промтами на различных языковых моделях (YandexGPT3.0, Yandex GPT Experimental, Gemini 1.5 Pro, Gemma-9B, Llama 3.1 Sonar 70B, GPT 4 omni) показали отличные результаты в решении разнообразных задач в проектировании обучения. Наилучшие результаты были достигнуты в задачах придумывания учебных примеров, аналогий и объяснений, формулировок и структуры учебных заданий, вопросов на рефлексию.