Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций
Как уже было сказано, многоугольник можно собрать из треугольников. И, как вы, вероятно, помните со школьных времен, внутренние углы последних составляют в сумме 180°. У треугольника три угла, каждый из которых должен быть меньше 180°, а значит, эта фигура точно не является невыпуклой. Получается, что для полноценной охраны любой треугольной комнаты достаточно одного человека. (Подобное заключение, конечно, не относится к четырехугольникам или многоугольникам с количеством сторон больше трех, так как любая из этих фигур может оказаться невыпуклой.) Итак, теперь вам известно, что на каждый из треугольников, составляющих икосиоктагон, клиентке потребуется самое большее по одному охраннику. В этой связи, наверное, есть смысл упомянуть, что треугольников в многоугольнике всегда на два меньше, чем сторон: треугольник – это один треугольник (что само собой разумеется) и три стороны, четырехугольник – два треугольника и четыре стороны, пятиугольник – это три треугольника и пять сторон…
Итак, число g для комнаты с количеством стен n должно равняться по меньшей мере n – 2, что дает нам g ≤ n – 2. Если объединить это неравенство с предыдущим ограничением, получим вот что: