Формулы на все случаи жизни. Как математика помогает выходить из сложных ситуаций
1 < g ≤ n – 2.
В случае с нашим залом, где по условию n = 28, диапазон возможных значений g будет представлен так:
1 < g ≤ 26.
Разбить полигональное помещение на треугольники можно следующим образом:
Разумеется, существуют и другие варианты, однако в том, что 28-сторонний полигон будет составлен из 26 треугольников, можно быть абсолютно уверенным.
Ход ваших рассуждений, кажется, устраивает клиентку, но у нее имеются вполне понятные опасения, что по залу – при достаточном бюджете – будут слоняться 26 охранников. Заверьте даму, что работа еще не закончена и что вы, приложив еще больше усилий, сумеете значительно уменьшить количество персонала.
Давайте подумаем, что получится, если распределить охранников по углам треугольников. Обозначим вершины каждого из них буквами A, B и C, причем таким образом, чтобы углы с одной и той же буквой не соседствовали друг с другом.
На иллюстрации буквы необходимо расставить в нужных местах.
«Почему это так важно?» – возможно, поинтересуетесь вы. Вот почему: выбрав вершину, обозначенную буквой А, В или С, и поместив туда соответствующего охранника, мы дадим каждой фигуре персонального наблюдателя, но некоторые из них будут обозревать больше одного треугольника. Дело в том, что некоторые углы относятся сразу к нескольким треугольникам. Разбивая помещение на простейшие выпуклые многоугольники, мы стремились, чтобы общими вершинами – особенно в двух углах зала, обведенных кружками, – обладало как можно большее количество треугольников. Таким образом, если у многоугольника n вершин, то количество углов, обозначенных как A, B или C, должно быть около n ÷ 3. Поскольку n ÷ 3 не обязательно будет целым числом, нам придется округлять его в меньшую сторону. В зависимости от точной формы помещения могут найтись способы, как еще уменьшить количество персонала, но будьте уверены: полученный ранее результат окажется верхней границей минимального числа охранников. Итак, теперь вы знаете: